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1 Mathematical Proofs
Proof of Rotation Equivariance of Orthonormal Basis
Mℓ

i of LRFs. We will prove the rotation equivariance of
the orthonormal basis Mℓ

i designed for LRFs as mentioned
in Section 3.1 of the main work. Given a random rotation
matrix R ∈ R3×3, it is easy to derive that #»xi

ℓ is equivariant
to rotations given the rotated version #»xi

ℓ
,rot:
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where the subscript rot represents the axis after rotations.
Moreover, Σℓ

i from Eq. (1) of the main work after rotations
can be represented as follows:
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As mentioned in the main work, eigenvalue decomposition
can be directly applied to Σℓ

i , resulting in the following ex-
pressions:
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Since #»zi
ℓ is defined to have the same direction as the eigen-

vector with the smallest eigenvalue, hence after rotation,
#»zi

ℓ
,rot = R #»zi

ℓ. Thus, the rotated y-axis is:
#»yi

ℓ
,rot =

#»zi
ℓ
,rot × #»xi

ℓ
,rot = R #»zi

ℓ ×R #»xi
ℓ

= det (R)
(
R−1

)⊤ (
#»zi

ℓ × #»xi
ℓ
)

= R
(

#»zi
ℓ × #»xi

ℓ
)
= R #»yi

ℓ.

(4)

Since all basis vectors are rotation-equivariant, hence the
local orthonormal basis Mℓ

i = [ #»xi
ℓ, #»yi

ℓ, #»zi
ℓ] is rotation-

equivariant.
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Proof of Rotation Invariance of Local Shape Descriptors
pℓij . Here, we show the rotation invariance of local shape
descriptors pℓij introduced in Section 3.1 of the main work.
Based on the proof shown above, it is easy to show the rota-
tion invariance of pℓij after rotation R:

pℓij,rot =
#     »pipj

⊤
,rotM

ℓ
i,rot = (R #     »pipj)

⊤ (
RMℓ

i

)
= #     »pipj

⊤Mℓ
i = pℓij .

(5)

2 Model Details
Architectures. The model overview for the 3D classifica-
tion, segmentation, and retrieval tasks is shown in Figure 1,
where details of each module design are explained in Sec-
tion 3 of the main work. The detailed designs of intra-frame
aligned self-attention and inter-frame aligned cross-attention
are illustrated in Figure 2. Please refer to Section 3.2 of the
main work for more details.

Cease of Encoding of Fg in AIT. We propose in our main
work that we do not apply additional learnable modules on
Fg in AIT to alleviate the model overfitting. This implemen-
tation creates a shot path from low-level feature space to
high-level feature space, which shares a similar spirit with
the skip connection in ResNet (He et al. 2016): allowing
lower-level information to flow effectively across layers to
help the learning of higher-level features and hence reduc-
ing the model overfitting. Meanwhile, we encode local fea-
tures along with Fg in AIT blocks as abstracting information
from local structures can increase the model’s ability on fine-
grained pattern recognition and generalizability to complex
scenes (Qi et al. 2017b). Hence, we find that not having ad-
ditional learnable modules to further process Fg in the AIT
module is beneficial to the our model performance.

Registration Loss. In this this part, we explain the bene-
fits of having registration loss to preserve the rotation invari-
ance and give more details about Eq. (10) of the main work.
Suppose Uℓ and Ug are local and global part information of
the final integrated feature U. By maximizing the mutual
information between (U,Fℓ) and (U,Fg), (Uℓ,Fℓ) and
(Ug,Fg) are implicitly maximized. In this case, the shared
geometric information between the local Fℓ/global Fg and
the integrated domain U are refined, increasing the repre-
sentation power of U. Besides, the maximized similarities of
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Figure 1: Model overview for (a) classification/retrieval and
(b) segmentation. GRF: global reference frame; LRF: local
reference frame; SA: set abstraction; AIT: Aligned Integra-
tion Transformer; and FP: forward passing.
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Figure 2: Illustrations of attention-based feature integra-
tion, where blue and green boxes indicate self- and cross-
attention. Brown, gold and purple colored components cor-
respond to v, k and q implementations.

(Uℓ,Fℓ) and (Ug,Fg) also tend to learn rotation invariance
in an unsupervised manner. Specifically, although Fℓ/Uℓ en-
codes local patches with different poses (since LRFs are
unaligned), and Fg/Ug encodes the whole 3D object in a
canonical pose, their feature similarity should be enforced
to be similar as they represent the same 3D object, no matter
what their poses are. Moreover, the mutual information be-
tween a local scale of a 3D object and a global scale of the
same object is maximized, which embeds U with more ac-
curate geometric information to distinguish it from objects
in different classes.

We then explain the symbols in Eq. (10) of the main work.
M stands for the set of all B ×N pairs of positive samples
across mini-batches, i.e., M = {(0, 0), ..., (B×N,B×N)},
where B is the number of batch size and N is the number
of points. The point feature Uk are the set of negative keys
where (·, k) ∈ M and k ̸= j. Note that since the registration
loss function is applied to both Fℓ and Fg , the point features
of the same point encoded from the local and global scales
are pushed close to each other, where the mutual information
is increased such that shared geometric information can be
discovered across the local and global scales.

Training Details. For all three tasks, we set the batch
size to 32 for training and 16 for testing. We use farthest
point sampling to re-sample the points from the initial 10k
points to 1024 points for classification and retrieval and 2048
points for segmentation. Random point translation within
[−0.2, 0.2] and rescaling within [0.67, 1.5] were adopted for
augmentation. We trained the model for 250 epochs with
tα = 15 and t = 0.017. SGD is adopted as the optimizer,
where the learning rate was set to 1e-2 with momentum of
0.9 and weight decay of 1e-4. Cosine annealing was applied
to reschedule the learning rate for each epoch. For classi-
fication and retrieval, we used one RTX2080Ti GPU with
PyTorch for model implementation, and we used two GPUs
for the segmentation task. The normal vector information is
ignored for all experiments.

3 More Analysis Experiments
Influence of Randomness. We report the variance and
mean values of each model in Table 5 of the main work to
derive a more accurate and reliable estimate of our model
performance. We hence report the variance and mean values
of performance of each model in Table 5 on ModelNet40
with 5 training rounds. As shown in the Table 1, we can see
that even for our model weights with the lowest performance
90.6% (among our five repeated runs), it still surpasses the
highest performance among models from A to H.

Model A B C
Acc. (%) 89.8±0.2 90.4±0.2 90.1±0.1
Model D E F
Acc. (%) 89.8±0.4 90.1± 0.3 89.6±0.4
Model G H Best
Acc. (%) 90.0±0.2 90.3±0.3 90.8±0.2

Table 1: Variance and Mean values of different model per-
formances on ModelNet40 with z/SO(3).



Point Re-sampling and Down-sampling. We examine
different point re-sampling strategies from the initial 10k in-
put points down to 1024 input points. Experimental results
of applying different sampling techniques on ModelNet40
are shown in Table 2, where we use random sampling (RS),
farthest point sampling (FPS), uniform sampling (US), and
inverse density importance sampling (IDIS) from (Groh, Wi-
eschollek, and Lensch 2018) to examine the impact of differ-
ent sampling methods on rotation invariance. Note that point
sampling affects both LRF and GRF constructions in our de-
sign, so we can only give analysis when considering both
reference frames. We can see that random sampling gives
the lowest model performance with 89.7%, with 1.3% abso-
lute performance drop compared to our method using FPS.
Inverse density importance sampling can achieve a compa-
rable result as our method, while it is not strictly invariant
to rotations. We argue that due to the information compen-
sation between features encoded from LRFs and GRF, dif-
ferent sampling strategies will not affect our model perfor-
mance quite much.

Sampling Method RS FPS (ours) US IDIS
z/z 89.7 91.0 90.2 90.6
z/SO(3) 89.7 91.0 90.2 90.6
SO(3)/SO(3) 89.7 91.0 90.2 90.6

Table 2: Classification results (%) on ModelNet40 with dif-
ferent re-sampling techniques.

Visualization of U. To better present the discriminabil-
ity of the learned features, we summarize the shape fea-
ture representation U by maxpooling and visualize it via t-
SNE (Van der Maaten and Hinton 2008). Experiments are
conducted on object classification under z/z and z/SO(3).
Only the first 16 classes are selected for a clear representa-
tion purpose as shown in Figure 3. Although it is difficult to
correctly separate all categories, we can see that some shape
classes can be perfectly predicted, and the overall represen-
tation ability of U under different testing protocols is satis-
factory and consistent.

Figure 3: t-SNE of the aggregated U with z/SO(3) (Left) and
SO(3)/SO(3) (Right). Clusters indicate good predictions in
object classification.

Local Rotation Invariance. In this part, we examine the
model performance when using different methods to con-

Method PPF
(w. normal)

PPF
(w.o. normal)

Ours
(w. normal)

Ours
(w.o. normal)

Acc. (%) 89.3 88.1 91.9 91.0

Table 3: Classification results (%) on ModelNet40 with
z/SO(3).

struct the local rotation-invariant feature pℓij . Besides the
proposed method that builds pℓij on LRFs, we also examine
building pℓij with point-pair features (PPFs) following Deng,
Birdal, and Ilic (2018). As mentioned in (Deng, Birdal, and
Ilic 2018), the normal information is assumed to be known
and is utilized to construct PPFs. However, in our case,
we only consider xyz positions of the point cloud as the
known information, and we treat the point normals as un-
known since in most cases normal information is hard to
obtain. Hence, in Table 3, we report both cases when us-
ing the reference vector #»z as the point normals and the
actual normal vectors for both PPF-based and LRF-based
rotation-invariant features at low levels. We find that the
model performance of using PPFs is lower than our LRF-
based method. The reason is that point positions are impor-
tant for shape learning, since they provide information of
exact shape of the 3D objects. However, point-pair features
give information about the topology of a 3D shape, and dif-
ferent 3D shapes can have the same topology, which intro-
duces difficulty for exact 3D shape learning.

Model Complexity. Inference model sizes of different
methods along with the corresponding construction time
for LRFs and inference speed are reported in Table 4.
The construction time measured in seconds (s) shows time
cost for different models generating their low-level rotation-
invariant shape codes, where we record the total time
for local and global representation constructions of RI-
Framework and our work. VN-DGCNN does not compute
the rotation-invariant shape codes, so no result can be re-
ported. The inference speed with the unit of number of in-
stances evaluated within one second (ins./s) is measured for
each method with a batch size of 1. When computing the
inference speed, the amount of time for low-level rotation-
invariant feature construction of methods (Li et al. 2021b;
Kim, Park, and Han 2020; Zhang et al. 2019; Li et al. 2021a)
is also considered. Table 4 shows that our method only needs
a relatively short construction time for both LRFs and GRF.
Meanwhile, the trade-off between the accuracy and infer-

Method Params (M) Times (s) Speed (ins./s) Acc (%)
RIConv 0.68 0.041 396.4 86.4
RI-GCN 4.19 0.057 139.1 89.5
RI-Framework 2.36 0.134 43.1 89.4
VN-DGCNN 2.77 - 77.3 89.5
Li et al. (2021a) 2.76 0.047 35.8 90.2
Ours 3.11 0.043 205.3 91.0

Table 4: Model complexity construction time for LRFs, and
inference speed on ModelNet40 with z/SO(3), where Li
et al. (2021a) is considered without test time augmentation.



ence speed is hard to balance. We will investigate the model
design for a much high accuracy and faster speeds in the
future work.

Sign Ambiguity. As mentioned in the main work, we pro-
pose simple techniques to address the sign ambiguity issue
introduced by eigenvalue decomposition when computing
the LRFs and GRF. We thus examine the model performance
with no sign disambiguation techniques applied, of which
the results are reported in Table 5. It can be seen that sign
ambiguity negatively affects the model performance, where
performances drop by 0.7% and 0.9% when uncertainty of
vector directions is introduced to the model training. With
our proposed solutions, the model behavior can be stabilized
hence the classification accuracy increases.

Method no@Mℓ no@Mg no@Mℓ and Mg

Acc. (%) 90.3 90.1 89.8

Table 5: Classification results (%) on ModelNet40 with
z/SO(3), where no@ denotes no sign disambiguation tech-
nique applied.

Rotational Effect of Mg . As mentioned in (Li et al.
2021a), different ways to ensure Mg is a valid rotation ma-
trix would result in different model performances. In this
part, we examine four different methods to ensure Mg is a
valid rotation as follows: (a) we randomly permute two basis
vectors regardless of the S value; (b) we randomly negate the
value of a basis vector regardless of the S value; (c) we per-
mute two basis vectors of S values being the smallest two;
(d) we simply reverse the direction of the basis vector whose
S value is the smallest, which is the proposed method in our
implementation. We can see from Table 6 that our simple de-
sign achieves the highest value, while all the others decrease
the model performance, which shows the effectiveness of
our proposed method.

3D Semantic Segmentation. To check our model’s effec-
tiveness on real-world large scenes, additional experiments
are conducted on S3DIS dataset (Armeni et al. 2016), which
includes six indoor areas of three different buildings. Each
point is labeled by one of the 13 categories (e.g., ceiling,
chair or clutter). Following the same pre-processing steps as
(Qi et al. 2017b; Wang et al. 2019), each room is divided into
1m×1m blocks and for each block 4096 points are sampled
during training process. We use area-5 for testing and all the
other areas for training. The quantitative results are shown
in Table 7 following (Zhao et al. 2022), where it shows that
under random rotations, our model outperforms LGR-Net by
7.8%, showing a more effective way to process large indoor
scenes. For a more intuitive understanding of our model per-
formance, qualitative results are shown in Figure 4 for refer-
ence.

3D Part Segmentation. For visualization purposes (see
Figure 4 in the main work) as well as a detailed analy-
sis of model behavior for each category, we report the per-
class mIoU accuracies under z/SO(3) and SO(3)/SO(3) in

Method a b c d (ours)
Acc. (%) 90.1 90.1 90.5 91.0

Table 6: Classification results (%) on ModelNet40 with
z/SO(3).

Method z/z (%) z/SO(3) (%) SO(3)/SO(3)(%)
PointNet (Qi et al. 2017a) 41.1 4.1 29.3
DGCNN (Wang et al. 2019) 48.4 3.6 34.3
RIConv (Zhang et al. 2019) 22.0 22.0 22.0
LRG-Net (Zhao et al. 2022) 43.4 43.4 43.4
Ours 51.2 51.2 51.2

Table 7: Semantic segmentation results (mIoU) on S3DIS
area-5.

Tables 8 and 9, where bold numbers indicate the best re-
sult for each category. As per-class mIoU scores are not re-
ported in VN-DGCNN (Deng et al. 2021), we follow their
official implementation1 and report the per-class mIoU re-
sults in both tables. However, the implemented results ob-
tained are much lower than their reported results, and we
will later consult with the authors for their trained model
weights and will report accurate values in the future. Beside
VN-DGCNN, our model outperforms recent SoTA methods
(Zhao et al. 2022; Luo et al. 2022) in segmentation of several
classes such as airplane, chair, table and etc under different
testing conditions. Furthermore, it is also obvious that our
model performance is consistent across all categories when
tested under different rotations. In addition, we have shown
more qualitative examples in Figure 5, which includes all 16
classes and for each class, we present two pairs of ground
truth and predicted samples. We can see that although errors
occur when the boundary between the different parts have
marginal difference, our model achieves great performance
for most classes.
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Method mIoU air bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate tableplane phone bike board
PointNet (Qi et al. 2017a) 37.8 40.4 48.1 46.3 24.5 45.1 39.4 29.2 42.6 52.7 36.7 21.2 55.0 29.7 26.6 32.1 35.8
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LGR-Net (Zhao et al. 2022) 80.0 81.5 80.5 81.4 75.5 87.4 72.6 88.7 83.4 83.1 86.8 66.2 92.9 76.8 62.9 80.0 80.0
VN-DGCNN⋆ (Deng et al. 2021) 74.4 80.8 80.0 77.3 70.9 89.2 60.4 88.8 82.9 81.1 83.8 28.7 92.8 73.9 51.3 68.0 80.5
OrientedMP (Luo et al. 2022) 80.1 81.7 79.0 85.0 78.1 89.7 76.5 91.6 85.9 81.6 82.1 67.6 95.0 79.6 64.4 76.9 80.7
Ours 80.3 84.5 82.7 83.9 76.6 90.2 76.1 91.6 86.6 83.5 84.6 50.1 94.4 81.9 60.3 75.3 81.8

Table 8: Segmentation results of class-wise and averaged mIoU on ShapeNetPart under z/SO(3), where ⋆ indicates that our
reproducing results of VN-DGCNN following the official code1.

Method mIoU air bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate tableplane phone bike board
PointNet (Qi et al. 2017a) 74.4 81.6 68.7 74.0 70.3 87.6 68.5 88.9 80.0 74.9 83.6 56.5 77.6 75.2 53.9 69.4 79.9
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RI-Framework (Li et al. 2021b) 79.4 81.4 84.5 85.1 75.0 88.2 72.4 90.7 84.4 80.3 84.0 68.8 92.6 76.1 52.1 74.1 80.0
LGR-Net (Zhao et al. 2022) 80.1 81.7 78.1 82.5 75.1 87.6 74.5 89.4 86.1 83.0 86.4 65.3 92.6 75.2 64.1 79.8 80.5
VN-DGCNN⋆ (Deng et al. 2021) 74.7 80.0 79.4 79.1 71.5 89.2 66.1 89.0 83.5 80.6 82.0 29.3 91.4 73.4 51.5 67.8 81.0
OrientedMP (Luo et al. 2022) 80.9 81.8 78.8 85.4 78.0 89.6 76.7 91.6 85.7 81.7 82.1 67.6 95.0 79.1 63.5 76.5 81.0
Ours 80.4 84.3 82.2 84.6 77.9 89.9 76.6 91.3 86.7 84.1 84.3 50.1 93.4 79.0 63.7 75.3 82.3

Table 9: Segmentation results of class-wise and averaged mIoU on ShapeNetPart under SO(3)/SO(3).
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Figure 4: Visualization of semantic segmentation results on S3DIS area-5. The first row is the original inputs, the second row
is the ground truth (GT) samples and the last row is our predicted results.
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Figure 5: Segmentation comparisons between the ground truth (GT) and our model on ShapeNetPart dataset under z/SO(3).


