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Abstract

Recent investigations on rotation invariance for 3D point
clouds have been devoted to devising rotation-invariant fea-
ture descriptors or learning canonical spaces where objects
are semantically aligned. Examinations of learning frame-
works for invariance have seldom been looked into. In this
work, we review rotation invariance in terms of point cloud
registration and propose an effective framework for rota-
tion invariance learning via three sequential stages, namely
rotation-invariant shape encoding, aligned feature integration,
and deep feature registration. We first encode shape descrip-
tors constructed with respect to reference frames defined over
different scales, e.g., local patches and global topology, to
generate rotation-invariant latent shape codes. Within the in-
tegration stage, we propose Aligned Integration Transformer
to produce a discriminative feature representation by inte-
grating point-wise self- and cross-relations established within
the shape codes. Meanwhile, we adopt rigid transformations
between reference frames to align the shape codes for fea-
ture consistency across different scales. Finally, the deep in-
tegrated feature is registered to both rotation-invariant shape
codes to maximize their feature similarities, such that ro-
tation invariance of the integrated feature is preserved and
shared semantic information is implicitly extracted from
shape codes. Experimental results on 3D shape classification,
part segmentation, and retrieval tasks prove the feasibility of
our framework.

1 Introduction

Point cloud analysis has recently drawn much interest from
researchers. As a common form of 3D representation, the
growing presence of point cloud data is encouraging the de-
velopment of many deep learning methods (Qi et al. 2017a;
Guo et al. 2021; Zhang et al. 2021), showing great success
for well-aligned point clouds on different tasks. However, it
is difficult to directly apply 3D models to real data as raw
3D objects are normally captured at different viewing an-
gles, resulting in unaligned data samples, which inevitably
impact the deep learning models which are sensitive to rota-
tions. Therefore, rotation invariance becomes an important
research topic in the 3D domain.

To achieve rotation invariance, a straightforward way
is augmenting training data with massive rotations which,
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Figure 1: Frameworks of our design (left) and robust point
cloud registration (right), where TI and RI are transforma-
tion invariance and rotation invariance, and T is the rigid
transformation. The dotted line indicates the computation of
T between reference frames.
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however, requires a large memory capacity and exhibits lim-
ited generalization ability to unseen data (Kim, Park, and
Han 2020). There are attempts to align 3D inputs to a conical
pose (Jaderberg et al. 2015; Cohen et al. 2018), or to learn
rotation robust features via equivariance (Deng et al. 2021;
Luo et al. 2022), while these methods are not rigorously
rotation-invariant and present noncompetitive performance
on 3D shape analysis. To maintain consistent model be-
havior under random rotations, some methods (Zhang et al.
2019; Chen et al. 2019; Xu et al. 2021) follow Drost et al.
(2010) to handcraft rotation-invariant point-pair features.
Others (Zhang et al. 2020; Li et al. 2021a; Zhao et al. 2022)
design robust features from equivariant orthonormal bases.
Most of the mentioned works either manipulate model in-
puts or generate canonical spaces to achieve rotation invari-
ance (RI). In this work, we review the problem of RI from
a different aspect: robust point cloud registration (PCR). We
find that PCR and RI share the same goal: PCR aligns low-
dimensional point cloud features (e.g., xyz) from the source
domain to the target domain regardless of transformations,



while RI can be considered to align high-dimensional la-
tent features to rotation-invariant features. Specifically, the
goal of PCR is to explicitly align the source point cloud to
the target, both representing the same 3D object, and for RI
learning, we implicitly align the final feature representation
of a 3D shape to a hidden feature of the same shape, which
is universally rotation-invariant to any rotations.

Motivated by this finding, we propose our learning frame-
work in Fig. 1 with three sequential stages, namely rotation-
invariant shape encoding, aligned feature integration, and
deep feature registration. Firstly, we (a) construct and feed
point pairs with different scales as model inputs, where we
consider local patches P¢ with small number of points and
global shape PY with the whole 3D points. Hence, the fi-
nal feature representation can be enriched by information
from different scales. Low-level rotation-invariant descrip-
tors are thus built on reference frames and encoded to gener-
ate latent shape codes F* and F¥ following recent PCR work
(Pan, Cai, and Liu 2022). Secondly, we (b) introduce a vari-
ant of transformer (Vaswani et al. 2017), Aligned Integration
Transformer (AIT), to implicitly integrate information from
both self- and cross-attention branches for effective feature
integration. In this way, information encoded from different
point scales is aggregated to represent the same 3D object.
Moreover, we consider F* and F9 as unaligned since they
are encoded from unaligned reference frames. To address
the problem, we follow the evaluation technique proposed
in PCR (Pan, Cai, and Liu 2022), where we use relative ro-
tation information (T) with learnable layers to align F* and
F9 for feature consistency. Finally, to ensure RI of the inte-
grated feature U, we follow PCR to (¢) examine the corre-
spondence map of (F9, U) and (F*¢, U), such that the mu-
tual information between a local patch of a 3D object and
the whole 3D object is maximized, and RI is further ensured
in the final geometric feature.

The contributions of our work are summarized as follow-
ing three folds: (1) To our knowledge, we are the first in de-
veloping a PCR-cored representation learning framework to-
wards effective RI studies on 3D point clouds. (2) We intro-
duce Aligned Integration Transformer (AIT), a transformer-
based architecture to conduct aligned feature integration for
a comprehensive geometry study from both local and global
scales. (3) We propose a registration loss to maintain rota-
tion invariance and discover semantic knowledge shared in
different parts of the input object. Moreover, the feasibility
of our proposed framework is successfully demonstrated on
various 3D tasks.

2 Related Work

Rotation Robust Feature Learning. Networks that are
robust to rotations can be equivariant to rotations. Esteves
et al. (2018) and Cohen et al. (2018) project 3D data
into a spherical space for rotation equivariance and per-
form convolutions in terms of spherical harmonic bases.
Some (Spezialetti et al. 2020; Sun et al. 2021) learn canon-
ical spaces to unify the pose of point clouds. Recent
works (Luo et al. 2022; Deng et al. 2021; Jing et al. 2020)
vectorize the scalar activations and mapping SO(3) actions
to a latent space for easy manipulations. Although these

works present competitive results, they cannot be strictly
rotation-invariant. Another way for rotation robustness is to
learn rotation-invariant features. Handcraft point-pair fea-
tures are rotation-invariant (Zhang et al. 2019; Chen et al.
2019; Xu et al. 2021), but they focus on local domains
and ignore the global overview of 3D objects. Others use
rotation-equivariant local reference frames (LRFs) (Zhang
et al. 2020; Thomas 2020; Kim, Park, and Han 2020) or
global reference frames (GRFs) (Li et al. 2021a) as model
inputs based on principal component analysis (PCA). How-
ever, they may produce inconsistent features across differ-
ent reference frames, which would limit the representational
power. In contrast to abovementioned methods with rotation
robust model inputs or modules, we examine the relation be-
tween RI and PCR and propose an effective framework.

3D Robust Point Cloud Registration. Given a pair of Li-
DAR scans, 3D PCR requires an optimal rigid transforma-
tion to best align the two scans. Despite the recent emerging
of ICP-based methods (Besl and McKay 1992; Wang and
Solomon 2019b), we follow robust correspondence-based
approaches in our work (Deng, Birdal, and Ilic 2018; Yuan
et al. 2020; Qin et al. 2022; Pan, Cai, and Liu 2022), where
RI is widely used to mitigate the impact of geometric trans-
formations during feature learning. Specifically, both Pan,
Cai, and Liu (2022) and Qin et al. (2022) analyze the en-
coding of transformation-robust information and introduce
a rotation-invariant module with contextual information into
their registration pipeline. All these methods showing im-
pressive results are closely related to rotation invariance. We
hypothesize that the learning framework of RI can be sim-
ilar to PCR, and we further prove in experiments that our
network is feasible and able to achieve competitive perfor-
mance on rotated point clouds.

Transformers in 3D Point Clouds. Transformers (Doso-
vitskiy et al. 2021; Liu et al. 2021) applied to 2D vision have
shown great success, and they are gaining prominence in 3D
point clouds. For example, Zhao et al. (2021) uses vector-
ized self-attention (Vaswani et al. 2017) and positional em-
bedding for 3D modeling. Guo et al. (2021) proposes offset
attention for noise-robust geometric representation learning.
Cross-attention is widely employed for semantic informa-
tion exchange (Qin et al. 2022; Yu et al. 2021a), where fea-
ture relations between the source and target domains are ex-
plored. Taking advantage of both, we design a simple yet
effective feature integration module with self and cross re-
lations. In addition, transformation-related embeddings are
introduced for consistent feature learning.

Contrastive Learning with 3D Visual Correspondence.
Based on visual correspondence, contrastive learning aims
to train an embedding space where positive samples are
pushed together whereas negative samples are separated
away (He et al. 2020). The definition of positivity and neg-
ativity follows the visual correspondence maps, where pairs
with high confidence scores are positive otherwise negative.
Visual correspondence is important in 3D tasks, where se-
mantic information extracted from matched point pairs im-
proves the network’s understanding on 3D geometric struc-



tures. For example, PointContrast (Xie et al. 2020) explores
feature correspondence across multiple views of one 3D
point cloud with InfoNCE loss (Van den Oord, Li, and
Vinyals 2018), increasing the model performance for down-
stream tasks. Info3D (Sanghi 2020) and CrossPoint (Afham
et al. 2022) minimize the semantic difference of point fea-
tures under different poses. We follow the same idea by reg-
istering the deep features to rotation-invariant features at in-
termediate levels, increasing feature similarities in the em-
bedding space to ensure rotation invariance.

3 Method

Given a 3D point cloud including NN, points with xyz coor-
dinates P = {p; € R3} Y7, we aim to learn a shape encoder
f that is invariant to 3D rotations: f(P) = f(RP), where
R € SO(3) and SO(3) is the rotation group. RI can be inves-
tigated and achieved through three stages, namely rotation-
invariant shape encoding (Section 3.1)), aligned feature in-
tegration (Section 3.2), and deep feature registration (Sec-
tion 3.3).

3.1 Rotation-Invariant Shape Encoding

In this section, we first construct the input point pairs from
local and global scales based on reference frames, follow-
ing the idea of Pan, Cai, and Liu (2022) to obtain low-level
rotation-invariant shape descriptors from LRFs and GRF di-
rectly. Then we obtain latent shape codes via two set abstrac-
tion layers as in PointNet++ (Qi et al. 2017b).

Rotation Invariance for Local Patches. To construct
rotation-invariant features on LRFs, we hope to construct an
orthonormal basis for each LRF as M¢ = [z;¢, 7%, Z}Y] €
R3*3. Given a point p; and its neighbor p; € N (p;), we
choose Z;° = Dmp:/||Pmpbill2, Where p,, is the barycenter
of the local geometry and || - ||2 is L2-norm. We then define
Zt following Tombari, Salti, and Stefano (2010) to have the
same direction as an eigenvector, which corresponds to the
smallest eigenvalue via eigenvalue decomposition (EVD):
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where «; is a weight parameter, allowing nearby p; to have
large contribution to the covariance matrix, and d is the max-
imum distance between p; and p;. Finally, we define 7t as
zt x Tt RI is introduced to p; with respect to its neigh-
bor p; as p” = prJTMZ Proofs of the equivariance of MZ

and invariance of p” are shown in the supplementary ma-

terial. The latent shape code F* € RV is obtained via
PointNet++ and max-pooling.

Rotation Invariance for Global Shape. We apply PCA
as a practical tool to obtain RI in a global scale. Similar to

Eq. 1, PCA is performed by <= Y (5,77) (5mpi) T =
UgAgUgT, where p,, is the barycenter of P, U9 =
[u19, u39,u39) and A9 = diag(A\],\J, \]) are eigenvec-
tor and eigenvalue matrices. We take UY as the orthonor-
mal basis MY = [79, Y9, Z9] for GRF. By transform-

ing point p; with UY, the shape pose is canonicalized as
p? = p;MY. Proof of the RI of p{ is omitted for its sim-
plicity, and F9 € RV is obtained following PointNet++.

Sign Ambiguity. EVD introduces sign ambiguity for
eigenvectors, which negatively impacts the model perfor-
mance (Bro, Acar, and Kolda 2008). The description of sign
ambiguity states that for a random eigenvector u, u and
W', with %’ having an opposite direction to , are both
acceptable solutions to EVD. To tackle this issue, we sim-
ply force z;* of LRF to follow the direction of op;, with o
being the origin of the world coordinate. We disambiguate
basis vectors in MY by computing an inner product with
DPmpPi, Vi € Ny. Taking 29 for example, its direction is con-
ditioned on the following term:
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where (-, -) is the inner product, 1[] is a binary indicator that
returns 1 if the input argument is positive, otherwise 0. S,
denotes the number of points where 29 and p,,p; point to
the same direction. The same rule is applied to disambiguate
Y9 and Z9 by S, and S.,. Besides, as mentioned in Li et al.
(2021a), MY might be non-rotational (e.g., reflection). To
ensure MY a valid rotation, we simply reverse the direction
of the basis vector whose S value is the smallest. More anal-
yses on sign ambiguity are in the supplementary material.

if S, > 4o
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3.2 Aligned Feature Integration

Transformer has been widely used in 3D domain to capture
long-rage dependencies (Guo et al. 2021; Yu et al. 2021b). In
this section, we introduce Aligned Integration Transformer
(AIT), an effective transformer to align latent shape codes
with relative rotation angles and integrate information via
attention-based integration (Cheng et al. 2021). AIT utilizes
offset attention (Guo et al. 2021) for noise robustness. In the
following, we use subscripts sa and ca to denote implemen-
tations related to self- and cross-attention, respectively.

Preliminary: Offset Attention. We first review offset at-

tention as follows:

F = ¢(Fou) + Fin, Foo = Fyy, — ||softmax(A)|1v, A =gk’

3
where q = F;, W, k = F;, W, € RVXd and v =
Fi,W, € RNXC are query, key, and value embeddings,
and W,, W;, € R4 W, € RE*Y are the correspond-
ing projection matrices. || - ||; is L1-norm and ¢ denotes a
multi-layer perceptron (MLP). F',, is offset attention-related
feature and A € RV X is the attention logits.

Intra-frame Aligned Self-attention. Point-wise features
of F* are encoded from unaligned LRFs, so direct imple-
mentation of self-attention on F* can cause feature inconsis-
tency during integration. To solve this problem, rigid trans-
formations between distinct LRFs are considered, which
are explicitly encoded and injected into point-wise relation
learning process. We begin by understanding the transfor-
mation between two LRFs. For any pair of local orthonormal
bases M and Mf, a rotation can be easily derived AR ;; =
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Figure 2: [llustrations of (a) Intra-frame Aligned Self-attention and (b) Inter-frame Aligned Cross-attention modules. Note that

we only present processes for computing F',, in both modules.

Y & M?T and translation is defined as At j; = of —of, where
of /i indicates the origin. In our work, the translation part is
intentionally ignored, where we show in the supplementary
material that by keeping both rotation and translation infor-
mation, the model performance decreases.

Although AR ; is invariant to rotations, we do not di-
rectly project it into the embedding space, as it is sensitive
to the order of matrix product: AR;; # AR,j, giving in-
consistent rotation information when the product order is not
maintained. To address this issue, we construct our embed-
ding via the relative rotation angle A«;; between MY and
M¢, which is normally used in most PCR works (Yew and
Lee 2020; Pan, Cai, and Liu 2022) for evaluations. The rel-
ative rotation angle Ac; is computed as:

T AR;;)—1\ 1
Aay; = arccos (M) 80

5 - efo,x], @

where it is easy to see that Aa;; = Acy;. We further apply
sinusoidal functions on A« j; to generate N2 pairs of angu-
lar embeddings e € RV*N*4 for all N points as:

a . AOéji/ta o _ Aaji/ta
Ch2k = S Toooo2k/d ) “han2kal = €08 Jonog2k/d ) 0
(

where ¢, controls the sensitivity to angle variations.
Finally, we inject e into offset attention and learn intra-
frame aligned feature F}, via self-attention as follows:

Fixs = ¢ (Flu) + F' Fl, = F — || softmax(A.a) 1.,

attn rot attn T rot « a T
A = Asa + Asa 7Asa = qsaksmAsa = qsa(esawsa) s

(0)
where Qsq/Ksa/Vsa = F'WI /FIWE /FIWY , W €
R?*4 is a linear projection to refine the learning of 2, and

A, is the attention logits. The same process can be per-
formed for FY9 by swapping the index £ and g. Detailed il-
lustrations are shown in Fig. 2 (a).

Inter-frame Aligned Cross-attention. Semantic infor-
mation exchange between F and F9 in the feature space
is implemented efficiently by cross-attention (Chen, Fan,
and Panda 2021). Since F¢ and F9 are learned from differ-
ent coordinate systems, inter-frame transformations should
be considered for cross-consistency between F* and F9.
An illustration of the cross-attention module is shown in
Fig. 2 (b). Computation of inter-frame aligned feature F},
via cross-attention follows a similar way as Eq. 6:

Fisc = & (Fl) + F'Fl, = F' — || softmax(Aco) 1 Vea,

Aco = AL + AL AL = deokia, ALY = dea(€EWEL)

@)
where qcq/Kea/Vea = FIWI /FIWK JFIWY . A, is
cross-attention logits containing point-wise cross-relations
over point features defined across local and global scales.
e?, € RV*4is computed via Eq. 4 and Eq. 5 in terms of the
transformation between Mf and MY. To this end, the geo-
metric features learned between local and global reference
frames can be aligned given e, leading to a consistent fea-
ture representation.

Attention-based Feature Integration. Instead of alterna-
tively and repeatedly applying self- and cross-attention mod-
ules to extract hybrid features, we integrate the two modules
by incrementing their attention logits. Moreover, we focus
only on F* while treating F9 as supplementary informa-
tion to assist local geometry learning with the global shape
overview. We discuss that continuing encoding F9 via learn-
able weights along with F¢ can increase model overfitting,
thus lowering the model performance. We will validate our

I



discussion in Section 4.4. Meanwhile, attention logits from
the two branches are combined via addition, such that en-
coded information of all point pairs from a local domain can
be enriched by the global context of the whole shape. Illus-
tration is shown in the supplementary materials. The whole
process can be formulated as follows:

U=¢(Fo)+F',

(®
Fou = FZ - HSOftmaX(Ashared)Hl(vsa + vca)7

where Agpared = Asey + Across- In this way, intra-
frame point relations can now be compensated by inter-
frame information communication in a local-to-global man-
ner, which enriches the geometric representations.

3.3 Deep Feature Registration

Correspondence mapping (Wang and Solomon 2019a; Pan,
Cai, and Liu 2022) plays an important role in PCR, and we
discuss that it is also critical for achieving RI in our design.
Specifically, although F* and F9 are both rotation-invariant
by theory, different point sampling methods and the sign
ambiguity will cause the final feature not strictly rotation-
invariant. To solve this case, we first examine the correspon-
dence map:

exp (01(V)P2(X) /1)
S exp (B1(V) P2 (x;)T /1)

where @, and ¢, are MLPs that project latent embeddings
X and ) to a shared space, and ¢ controls the variation sen-
sitivity. It can be seen from Eq. 9 that the mapping function
m reveals feature similarities in the latent space, and it is
also an essential part for 3D point-level contrastive learning
in PointContrast (Xie et al. 2020) for the design of InfoNCE
losses (Van den Oord, Li, and Vinyals 2018), which have
been proven to be equivalent to maximize the mutual infor-
mation. Based on this observation, we propose a registration
loss function £,. = L% + £9, where L¢ and £ represent the
registration loss of (F¢,U) and (F9,U). Mathematically, L.
is defined as follows:

m(X,y):

&)

exp (451 (U;)P2 (ff)T/t)

Li=— log .
(i%;M 2 (- kyen P (21(Un)22())7 /1)

(10)

The same rule is followed to compute £9. Although we fol-
low the core idea of PointContrast, we differ from it in that
PointContrast defines positive samples based on feature cor-
respondences computed at the same layer level, while our
positive samples are defined across layers.

The intuition for the loss design is that the 3D shape is
forced to learn about its local region as it has to distinguish
it from other parts of different objects. Moreover, we would
like to maximize the mutual information between different
poses of the 3D shape, as features encoded from different
poses should represent the same object, which is very use-
ful in achieving RI in SO(3). Moreover, the mutual infor-
mation between F* and F9 is implicitly maximized, such
that shared semantic information about geometric structures
can be learned, leading to a more geometrically accurate and
discriminative representation. More details about £ can be
found in the supplementary material.

Rotation Sensitive z/z. z/SO(3) SO(3)/SO(3) | A
PointNet (Qi et al. 2017a) 89.2 162 75.5 59.3
PoinNet++ (Qi et al. 2017b) 89.3 28.6 85.0 56.4
PCT (Guo et al. 2021) 90.3 37.2 88.5 51.3
Rotation Robust z/z. 2/SO(3) SO(3)/SO(3) | A
Spherical CNN* (Esteves et al. 2018) | 88.9 76.9 86.9 10
SFCNN (Rao, Lu, and Zhou 2019) 914 848 90.1 5.3
RIConv (Zhang et al. 2019) 86.5 86.4 86.4 0.1
ClusterNet (Chen et al. 2019) 87.1 87.1 87.1 0.0
PR-InvNet (Yu et al. 2020) 89.2 89.2 89.2 0.0
RI-GCN (Kim, Park, and Han 2020) | 89.5 89.5 89.5 0.0
GCAConv (Zhang et al. 2020) 89.0 89.1 89.2 0.1
RI-Framework (Li et al. 2021b) 89.4 894 89.3 0.1
VN-DGCNN (Deng et al. 2021) 89.5 89.5 90.2 0.7
SGMNet (Xu et al. 2021) 90.0 90.0 90.0 0.0
Lietal. (2021a) 90.2 90.2 90.2 0.0
OrientedMP (Luo et al. 2022) 88.4 884 88.9 0.5
ELGANet (Gu et al. 2022) 90.3 90.3 90.3 0.0
Ours 91.0 91.0 91.0 0.0

Table 1: Classification results on ModelNet40 under rota-
tions. * denotes the input type as projected voxels of 2 x 642,
while the rest take raw points of 1024 x 3 as inputs. A is the
absolute difference between z/SO(3) and SO(3)/SO(3).

4 Experiments

We evaluate our model on 3D shape classification, part seg-
mentation, and retrieval tasks under rotations, and exten-
sive experiments are conducted to analyze the network de-
sign. Detailed model architectures for the three tasks are
shown in the supplementary material. Our evaluating proto-
cols are the same as (Esteves et al. 2018): training and testing
the network under azimuthal rotations (z/z); training under
azimuthal rotations while testing under arbitrary rotations
(z/SO(3)); and training and testing under arbitrary rotations
(SO(3)/S(3)).

4.1 3D Object Classification

Synthetic Dataset. We first examine the model perfor-
mance on the synthetic ModelNet40 (Wu et al. 2015)
dataset. We sample 1024 points from each data with only
xyz coordinates as input features. Hyper-parameters for
training follow the same as (Guo et al. 2021), except
that points are downsampled in the order of (1024, 512,
128) with feature dimensions of (3, 128, 256). We report
and compare our model performance with state-of-the-art
(SoTA) methods in Table 1. Both rotation sensitive and ro-
bust methods achieve great performance under z/z. How-
ever, the former could not generalize well to unseen rota-
tions. Rotation robust methods like Spherical CNN (Esteves
et al. 2018) and SFCNN (Rao, Lu, and Zhou 2019) achieve
competitive results under z/z, but their performance is not
consistent on z/SO(3) and SO(3)/SO(3) due to the imperfect
projection from points to voxels when using spherical so-
lutions. We outperform the recent proposed methods (Luo
etal. 2022; Xu et al. 2021; Deng et al. 2021) and achieve an
accuracy of 91.0%, proving the superiority of our framework
on classification.

Real Dataset. Experiments are also conducted on a real-
scanned dataset. ScanObjectNN (Uy et al. 2019) is a com-
monly used benchmark, containing 2,902 incomplete point
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Figure 3: Segmentation comparisons on ShapeNetPart,
where ground truth (GT) samples are shown for refer-
ence. Red dotted circles indicate obvious failures on certain
classes, and purple circles denote the slight difference be-
tween our design and VN-DGCNN.

Method z/SO(3) SO(@3)/S03) A

PointNet (Qi et al. 2017a) 16.7 54.7 38.0
PointNet++ (Qi et al. 2017b) 15.0 474 324
PCT (Guo et al. 2021) 28.5 45.8 17.3
RIConv (Zhang et al. 2019) 78.4 78.1 0.3
RI-GCN (Kim, Park, and Han 2020) 80.5 80.6 0.1

GCAConv (Zhang et al. 2020) 80.1 80.3 0.2
RI-Framework (Li et al. 2021b) 79.8 79.9 0.1

LGR-Net (Zhao et al. 2022) 81.2 81.4 0.2
VN-DGCNN (Deng et al. 2021) 79.8 80.3 0.5
OrientedMP (Luo et al. 2022) 76.7 77.2 0.5
Ours 86.6 86.3 0.3

Table 2: Classification results on ScanObjectNN OBJ_BG
under z/SO(3) and SO(3)/SO(3).

cloud objects in 15 classes, which is used to explore the
robustness to noisy and deformed 3D objects with non-
uniform surface density. We use the OBJ_BG subset with
background noise and sample 1024 points under z/SO(3)
and SO(3)/SO(3). Table 2 shows that our model achieves
the highest results with excellent consistency with random
rotations.

4.2 3D Part Segmentation

Shape part segmentation is a more challenging task than ob-
ject classification. We use ShapeNetPart (Yi et al. 2016) for
evaluation, where we sample 2048 points with xyz coordi-
nates as model inputs. The training strategy is the same as
the classification task except that the training epoch number
is 300. Part-averaged IoU (mloU) is reported in Table 3, and
per-class mIoU values are shown in the supplementary ma-
terial. Typical models such as PointNet++ and PCT are vul-
nerable to rotations. Rotation robust methods present com-
petitive results under z/SO(3), where we achieve the second

Method z/SO(3) SO@B3)/SO3) A
PointNet (Qi et al. 2017a) 38.0 62.3 243
PointNet++ (Qi et al. 2017b) 48.3 76.7 28.4
PCT (Guo et al. 2021) 38.5 752 36.7
RIConv (Zhang et al. 2019) 75.3 75.5 0.2
RI-GCN (Kim, Park, and Han 2020) 77.2 77.3 0.1
RI-Framework (Li et al. 2021b) 79.2 79.4 0.2
LGR-Net (Zhao et al. 2022) 80.0 80.1 0.1
VN-DGCNN (Deng et al. 2021) 814 814 0.0
OrientedMP (Luo et al. 2022) 80.1 80.9 0.8
Ours 80.3 80.4 0.1

Table 3: Segmentation results on ShapeNetPart under
z/SO(3) and SO(3)/SO(3), where the second best results are
underlined.

micro  macro
Method mAP  mAP
Spherical CNN (Esteves et al. 2018) | 0.685 0.444  0.565
SFCNN (Rao, Lu, and Zhou 2019) 0.705 0.483 0.594

Score

GCAConv (Zhang et al. 2020) 0.708 0.490 0.599
RI-Framework (Li et al. 2021b) 0.707  0.510 0.609
Ours 0.715 0.510 0.613

Table 4: Comparisons of SOTA methods on the 3D shape
retrieval task.

best result of 80.3%. We give more details of comparison be-
tween VN-DGCNN (Deng et al. 2021) and our work in the
supplementary material, where our method performs better
than VN-DGCNN for several classes. Moreover, qualitative
results shown in Fig. 3 present that we can achieve visually
better results than VN-DGCNN in certain classes such as
the airplane and car. More qualitative results are shown in
the supplementary material.

4.3 3D Shape Retrieval

We further conduct 3D shape retrieval experiments on
ShapeNetCore55 (Chang et al. 2015), which contains two
categories of datasets: normal and perturbed. We only use
the perturbed part to validate our model performance under
rotations. We combine the training and validation sets and
validate our method on the testing set following the training
policy of (Esteves et al. 2018). Experimental results are re-
ported in Table 4, where the final score is the average value
of micro and macro mean average of precision (mAP) as
in (Savva et al. 2017). Similar to the classification task, our
method achieves SoTA performance.

4.4 Ablation Study

Effectiveness of Transformer Designs. To examine the
effectiveness of our modifications to the transformer, we first
conduct classification experiments under z/SO(3) by ablat-
ing one or both of the angular embeddings and report the
performance in Table 5 (models A — C). Agpqreq means
that feature integration follows our proposed design using
shared attention logits. We find that the result of model B is
higher than Model C by 0.4%, which validates our design
of feature integration where MY is used as the main source
of information. When both angular embeddings are applied,
the best result is achieved with 91.0%.
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Table 5: Module analysis of AIT and loss functions. F9*
means encoding FY via learnable AIT.

Moreover, as mentioned in Section 3.2, F'9 is not encoded
to alleviate model overfitting. We demonstrate in model D
that when encoding F9 in the same way as F'¢ without con-
sidering the inter-frame rotational relation, the model perfor-
mance is decreased, which validates our discussion. More
analyses can be found in the supplementary material. We
further examine the effectiveness of our attention matrix-
based integration scheme by comparing our model perfor-
mance with the conventional method (model E), which ap-
plies self- and cross-attention sequentially and repeatedly.
We observe that model E is lower than the best result by
0.6%, which indicates that our design is more effective.

Registration Loss. We sequentially ablate £J and L
(models F — H) to check the effectiveness of our registration
loss deign. Results in Table 5 demonstrate that we can still
achieve a satisfactory result of 90.0% without feature regis-
tration. Individual application of £J and L’ shows the im-
provement when forcing the final representation to be close
to rotation-invariant features. Moreover, it can be seen that
model H performs better than model G, which indicates that
intermediate features learned from the global scale are im-
portant for shape classification. The best model performance
is hence achieved by applying both losses.

Robustness to Noise. In real-world applications, raw
point clouds contain noisy signals. We conduct experiments
to present the model robustness to noise under z/SO(3). Two
experiments are conducted: (1) We sample and add Gaus-
sian noise of zero mean and varying standard deviations
N (0, 0?) to the input data. (2) We add outliers sampled from
a unit sphere to each object. As shown in Fig. 4 (left), we
achieve on par results to RI-Framework when std is low,
while we perform better while std increases, indicating that
our model is robust against high levels of noise. Besides,
as the number of noisy points increases, most methods are
heavily affected while we can still achieve good results.

Visualization of Rotation Invariance. We further ex-
amine RI of learned features. Specifically, we use Grad-
CAM (Selvaraju et al. 2017) to check how the model pays
attention to different parts of data samples under different
rotations. Results are reported in Fig. 5 with correspondence
between gradients and colors shown on the right. RI-GCN
presents a good result, but its behavior is not consistent over
some classes (e.g., vase and plant) and it does not pay atten-
tion to regions that are critical for classification (see toilet),

Accuracy (%)

—=— RIConv

RI-GCN
—+— RI-framework
—&— SRINet
—e— ours

0.00 0.01 002 003 004 005 0 10 20 30 40 50
std of noise # of noisy points

Figure 4: Left: Results on Gaussian noise of zero mean and
variant standard deviation values. Right: Results on differ-
ent numbers of noisy points.

airplane guitar vase toilet plant
2. . sk P H

high

PointNet++

high

high
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Figure 5: Network attention on PointNet++ (top), RI-GCN
(mid) and our model (bot).

showing inferior performance to ours. PointNet++ shows no
resistance to rotations, while our method exhibits a consis-
tent gradient distribution over different parts with random
rotations, indicating our network is not affected by rotations.

5 Conclusion

In this work, we rethink and investigate the close relation be-
tween rotation invariance and point cloud registration, based
on which we propose a PCR-cored learning framework with
three stages. With a pair of rotation-invariant shape descrip-
tors constructed from local and global scales, a comprehen-
sive learning and feature integration module is proposed,
Aligned Integration Transformer, to simultaneously effec-
tively align and integrate shape codes via self- and cross-
attentions. To further preserve rotation invariance in the fi-
nal feature representation, a registration loss is proposed to
align it with intermediate features, where shared semantic
knowledge of geometric parts is also extracted. Extensive
experiments demonstrated the superiority and robustness of
our designs. In future work, we will examine efficient meth-
ods for invariance learning on large-scale point clouds.
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